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Abstract In the NMR experiment, the protein backbone
motion can be described by the N-H order parameters.
Though protein dynamics is determined by a complex net-
work of atomic interactions, we show that the order parameter
of residues can be determined using a very simple method, the
weighted protein contact number model. We computed for
each Ca atom the number of neighboring Co atoms weighted
by the inverse distance squared between them. We show
that the weighted contact number of each residue is directly
related to its order parameter. Despite the simplicity of this
model, it performs better than the other method. Since we
can compute the order parameters directly from the topolog-
ical properties (such as protein contact number) of protein
structures, our study underscores a very direct link between
protein topological structure and its dynamics.

Keywords NMR order parameter - Weighted protein
contact number - Protein dynamics - Prediction

Introduction

Given protein structures, the knowledge of protein dynam-
ics is useful in suggesting potential protein active sites [1]
or molecular recognition sites [2], or in understanding the
mechanisms of enzymatic reactions [3]. With the increasing
number of protein structures of unknown function deposited
in Protein Data Bank (PDB) [4], it becomes increasingly
important to develop efficient method to compute average
dynamical properties of protein in a high-throughput fashion.
Protein dynamics consists of a wide range of motional behav-
ior arising from a complex network of atomic interactions.
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Molecular dynamics (MD) [3,5-10], taking into the atomic
interactions through empirical force field, have proved to be
a powerful method to compute protein dynamics, but it is
impractical for large proteins due to the high computational
cost [11].

Recently, Zhang and Bruschweiler [12] expressed the
backbone S? order parameter as a function of close contacts
between the amide proton and the carbonyl oxygen of the
preceding amino acid and the surrounding protein atoms, i.e.,

Si2 = tanh |:oz Ze_rio—l,k/p + ﬂe_ril?lk/pj| +y (1)

k

where rl.o_l’ « 1s the distance between the carbonyl oxygen of
residue i — 1 and heavy atom k and rl.o_1 ¢ 1s the distance
between the amide proton and heavy atom k. The parame-
ter o, B and y were determined empirically and p is set to
1 A. We will refer to this method the contact model (CM).
Despite the simplificity of the CM, it provides for many pro-
teins a very accurate prediction of NMR order parameter.
Later, to take into account of motional correlation effects,
Bruschweiler and coworker developed a hybrid between the
CM and the elastic network model (ENM) [13, 14] referred
to as reorientational contact-weighted elastic network model
(rCENM) [15]. Here, we present a simple model to compute
N-H backbone order parameters, which considers essentially
only the contacting Co atoms. However, despite its simplic-
ity, this model performs better than other method.

Methods

We define the weighted protein contact number as

N
vi= > 1/r} 2)
J#i
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Table 1 Comparison of the correlation coefficient between predicted and experimental N—H S2 order parameters

Protein PDB WCN WCN* CM rCENM
BARKI1 PH domain 1bak 0.83 0.80 0.53 0.84
Calbindin 4icb 0.75 0.67 0.65 0.72
CspA 3mef 0.78 0.73 0.71 -
Frenolicin acyl carrier protein lor5 0.85 0.79 0.89 0.87
Lysozyme 1jef 0.83 0.67 0.72 0.68
P85« SH2 domain 1bfj 0.86 0.74 0.79 -
Ubiquitin lubq 0.96 0.89 0.96 0.97
Ketosteroid isomerase 8cho 0.82 0.79 0.57 0.78
Taotomerase 4ota 0.51 0.55 0.44 -
Interleukin-4 1hik 0.71 0.72 0.81 0.81
Average correlation coefficient 0.79 0.73 0.71 —F

¥ The average correlation coefficient over the seven structures for WCN, WCN*, CM and rCENM are 0.82, 0.76, 0.73 and 0.81, respectively
The experimental backbone N-H order parameter data: § ARK1 PH domain [16], Calbindin [20], CspA [22], Frenolicin acyl carrier protein
[23], Lysozyme [18], P85« SH2 domain of phosphoinostide 3-kinase [25], Ubiquitin [17], Ketosteroid isomerase [26], Taotomerase [27], and

Interleukin-4 [28]

where r;; is the distance between Ca atoms of residue i and j.
This equation essentially defines the contributions of neigh-
boring Ca atoms to the ith residue—the contribution of each
surrounding atom j to the central atom i is scaled down by
the factor 1/ rl2 To confine the computed order parameter S>
to be lying between 0 and 1, we apply the hyperbolic tangent
function to v;.

§? ~ tanh? v; (3)

This is the main result of this work. We will refer to this
method as the weighted contact-number (WCN) model.

Dataset

We used the datasets of Zhang and Bruschweiler [12] and
Ming and Bruschweiler [15]. However, our dataset is not
completely identical with the original one, since we could
not find some of the order parameters that are consistent with
those of the original dataset, and we also added some new
ones from the current literature. Our current dataset is larger
than the original dataset and comprises BARK1 PH domain
(1bak), calbindin (4icb), CspA (3mef), frenolicin acyl carrier
protein (lor5), lysozyme (1jef), P85« SH2 domain (1bfj),
ubiquitin (lubq), ketosteroid isomerase (8cho), tautomerase
(4ota), and interleukin-4 (1hik).

Results and discussion

Table 1 summarizes the Pearson correlation coefficients
between the NMR and the computed S? order parameters
by the WCN, CM, rCENM as well as the WCN* model (see
below). The WCN model generally performs better than the
CM model—the average correlation coefficient between the
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NMR and computed S? order parameters is ¢ = 0.79, while
that of the CM is ¢ = 0.71. In the case of rCENM, since
its source code is not available, we can only compare their
results available from the literature. For these seven struc-
tures, the performance of the WCN model (¢ = 0.82) is
comparable to that of the more complicated hybrid approach
rCENM (c = 0.81) for the seven structures.

To check the effects of the additional information of side-
chain groups on the computed order parameters, we com-
pared the computed S? values with (denoted as WCN*) and
without (i.e., the WCN model) the side-chain information
in Table 1. However, the inclusion of the side-chain groups
deteriorates the performance of the WCN model (¢ goes
down from 0.79 to 0.73). The reason for this is not clear.
It may be that the flexible side-chain conformations, though
conveying more detailed information about the atomic envi-
ronments, introduce undesirable noises that overshadow the
supposedly useful information of the former in the compu-
tation of the order parameters.

Figure 1 compares the experimental and the computed
order-parameter profiles by the WCN for some of the proteins
mentioned above. BARK1 PH domain has the same topol-
ogy as other PH domains, which are characterized by several
B-strands forming a B-sandwich flanked on one side by an
extended C-terminal «-helix that behaves as a molten helix
[16]. The Pearson correlation coefficient between the com-
puted N-H order parameter S%VCN and the experimental one
SI%IMR is 0.83. Ubiquitin [17] is a small single-domain protein
with 76 residues containing both an «-helix and
B-sheets. The agreement between S%VCN and SI%IMR of ubig-
uitin is excellent (¢ = 0.96).

The correlation coefficient of the prediction for lysozyme
[18] is 0.83. The order parameter of Pro-70 located on the
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Fig. 1 Experimental (open

circle) and predicted order
parameter by WCN (solid line)
and CM (dotted line) for
ARKI1, Ubiquitin, Calbindin,
lysozyme, Frendicin acyl carrier
protein, and CspA

199
10 Ubiquitin
R ¢

0.8 %) [e) O ..OQ)‘ A

o
2 06
04 |

0.2 -

1 31 61

Lysozyme
1.0 ysozy
o
Q (eo) o
IS &
09 /. [ K -
o Wl o -
s? ; of YL |
Wy
0.8 "
A L] :
0.7 " | | b L}
1 31 61 91 121

Calbindin

0.0 L 1

Residue number

most flexible loop is not available from NMR relaxation.
According to the X-ray structure of lysozyme, Pro-70 has the
sixth highest temperature factor (28.37) in the whole protein
[19] (the four residues having the highest temperature factors
are on the C-terminal region). Our prediction also shows that
Pro-70 is the most flexible except few residues located on the
C-terminal.

Calbindin Do [20] is composed of four a-helices, the
N-terminal (E17-S24) and C-terminal Ca>*-binding loops
(D54-S62), and the linker loop. Our prediction correctly iden-
tifies the most mobile linker loop and the C-terminal Ca>*-
binding loop which have significant lower S? values. The
rigid helical regions are also predicted to have higher order
parameters. The experimental data does not give the SZ value
of the Pro-20 on the N-terminal Ca?*-binding loop because
of the limit of NMR relaxation experiment. However Pro-20
shows higher temperature factor than its neighboring residues
in the X-ray structure [21], which is consistent with our pre-
diction. Despite the missing data of Pro-20, the correlation
coefficient is still high (r = 0.79).

Cold-shock protein from E. coli (CspA) [22] is a Greek-
key B-barrel protein. The segment of residues Asn-39 to Tyr-

1 31 61
Residue number

42 between two B-strands is identified to be partially disor-
dered in the crystallization environment [22]. Our method
successfully predicts it to be the most mobile region in the
protein except the N-terminal loop. However there is an dis-
agreement between prediction and experiment on Asp-46
(S3p : 0.58, 5% : 0.84) which is not fitted well with any
models in the NMR experiment [22]. The correlation coef-
ficient increases to 0.78 (from 0.74) if the data of residue
Asp-46, which is less reliable, is removed.

Frendicin ACP [23] is comprised of a three-helix bun-
dle structure and have a high correlation coefficient between
prediction and experiment (r = 0.81). The average value of
the order parameters of the three helices is 0.844, which is
consistent with our prediction that they have high 2 values.
We also correctly predict the C-terminal residues and the long
loop (Gly-17 to Asp-23) connecting two helices have the first
and second lowest average S? values respectively (0.358 and
0.492).

A recent study by Halle [24] showed that B factors (or
atomic mean-square displacements) are inversely propor-
tional to the number of noncovalent neighbor atoms within a
certain cutoff radius. The main differences between Halle’s

@ Springer



200

Theor Chem Account (2008) 121:197-200

approach and the WCN model are: (1) the former assumes
that every neighboring atom contributes equally, while, in
the latter, the contribution of each atom is scaled down by
its squared distance from the central atom; (2) and conse-
quently, Halle’s model needs to determine an optimal cutoff
distance, while the WCN does not need one (Eq. 2).

Our results show that the backbone dynamics of protein
structures can be directly inferred from the static structural
properties without the assumption of any mechanical models.
Since it is possible to compute quite accurate order parame-
ters directly from the structural properties of proteins, our
study underscores a direct link between protein topological
structure and its dynamics. In addition, since the WCN model
uses only Ca atoms, our results indicate that protein dynam-
ics (such as the order parameters) can be determined without
the knowledge of protein sequences. As increasing numbers
of protein structures are solved in recent years, our method
offers an efficient way to determine backbone motions with
high accuracy and is practical in the study of protein function-
dynamics relationship and structural genomics.
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